Membrane-anchored ubiquitin ligase complex is required for the turnover of lysosomal membrane proteins
نویسندگان
چکیده
Cells must regulate the abundance and activity of numerous nutrient transporters in different organelle membranes to achieve nutrient homeostasis. As the recycling center and major storage organelle, lysosomes are essential for maintaining nutrient homeostasis. However, very little is known about mechanisms that govern the regulation of its membrane proteins. In this study, we demonstrated that changes of Zn(2+) levels trigger the downregulation of vacuolar Zn(2+) transporters. Low Zn(2+) levels cause the degradation of the influx transporter Cot1, whereas high Zn(2+) levels trigger the degradation of the efflux channel Zrt3. The degradation process depends on the vacuole membrane recycling and degradation pathway. Unexpectedly, we identified a RING domain-containing E3 ligase Tul1 and its interacting proteins in the Dsc complex that are important for the ubiquitination of Cot1 and partial ubiquitination of Zrt3. Our study demonstrated that the Dsc complex can function at the vacuole to regulate the composition and lifetime of vacuolar membrane proteins.
منابع مشابه
Ubiquitin-dependent lysosomal membrane protein sorting and degradation.
As an essential organelle in the cell, the lysosome is responsible for digestion and recycling of intracellular components, storage of nutrients, and pH homeostasis. The lysosome is enclosed by a special membrane to maintain its integrity, and nutrients are transported across the membrane by numerous transporters. Despite their importance in maintaining nutrient homeostasis and regulating signa...
متن کاملIntegrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5
After endocytosis, membrane proteins can recycle to the cell membrane or be degraded in lysosomes. Cargo ubiquitylation favors their lysosomal targeting and can be regulated by external signals, but the mechanism is ill-defined. Here, we studied the post-endocytic trafficking of Jen1, a yeast monocarboxylate transporter, using microfluidics-assisted live-cell imaging. We show that the ubiquitin...
متن کاملRegulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1
Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion require...
متن کاملBsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins.
Membrane proteins destined for the vacuolar or lysosomal lumen are typically ubiquitinated, the ubiquitin serving as a targeting signal for the multivesicular body pathway. The RING-domain ubiquitin ligase Tul1 is an integral membrane protein that modifies the yeast vacuolar enzyme carboxypeptidase S (Cps1), the polyphosphatase Ppn1/Phm5 and other proteins containing exposed hydrophilic residue...
متن کاملCdc48 and Ubx1 participate in a pathway associated with the inner nuclear membrane that governs Asi1 degradation.
The nuclear envelope is a barrier comprising outer and inner membranes that separate the cytoplasm from the nucleoplasm. The two membranes have different physical characteristics and protein compositions. The processes governing the stability of inner nuclear membrane (INM) proteins are not well characterized. In Saccharomyces cerevisiae, the INM Asi1-Asi3 complex, principally composed of integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 211 شماره
صفحات -
تاریخ انتشار 2015